منابع مشابه
Evaluation of Flank Wear of Iron-rich Binder Carbide Cutting Tool in Turning of Titanium Alloy
Despite the fact that Titanium material has been considered as difficult to cut material, its usage has been increasing day by day in all engineering sectors; wherever criticality is encountered. Many studies are going on in view of increasing tool life at high cutting speed to improve productivity. In this study, attempt has been made to see the effect of iron as a partial substitution along ...
متن کاملBoron carbide nanowires with uniform CNx coatings
Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewal...
متن کاملInvestigating Flank Wear and Cutting Force on Hard Steels by CBN Cutting Tool by Turning
In this research work a series of tests were conducted in order to determine flank wear and cutting force FY on hard AISI 440 C martensitic stainless steel and SCM 440 alloy steels. The operating parameters are cutting speed, feed rate and a constant depth of cut to investigate the flank wear and cutting force. No cutting fluid was used during the turning process. The cutting tool used was CBN ...
متن کاملModelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملMetal carbide/amorphous C-based nanocomposite coatings for tribological applications
This paper tries to assess the factors governing the tribological behaviour of different nanocomposites films composed by metallic carbides (MeC) mixed with amorphous carbon (a-C). Different series of MeC/a-C coatings (with Me: Ti(B) and W) were prepared by magnetron sputtering technique varying the power applied to the graphite target in order to tailor the carbon content into the films. A dee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Surface Finishing Society of Japan
سال: 1989
ISSN: 0915-1869,1884-3409
DOI: 10.4139/sfj.40.22