Haldane exclusion statistics and second virial coefficient

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haldane exclusion statistics and second virial coefficient.

We show that Haldanes new definition of statistics, when generalised to infinite dimensional Hilbert spaces, is equal to the high temperature limit of the second virial coefficient. We thus show that this exclusion statistics parameter, g , of anyons is non-trivial and is completely determined by its exchange statistics parameter α. We also compute g for quasiparticles in the Luttinger model an...

متن کامل

Haldane Exclusion Statistics and the Boltzmann Equation

We generalize the collision term in the one-dimensional Boltzmann-Nordheim transport equation for quasiparticles that obey the Haldane exclusion statistics. For the equilibrium situation, this leads to the " golden rule " factor for quantum transitions. As an application of this, we calculate the density response function of a one-dimensional electron gas in a periodic potential, assuming that ...

متن کامل

Fermions at unitarity and Haldane exclusion statistics

– We consider a gas of neutral fermionic atoms at ultra-low temperatures, with the attractive interaction tuned to Feshbach resonance. We calculate, the variation of the chemical potential and the energy per particle as a function of temperature by assuming the system to be an ideal gas obeying the Haldane-Wu fractional exclusion statistics. Our results for the untrapped gas compare favourably ...

متن کامل

Haldane exclusion statistics and the charge fractionalisation in chiral bags

It is proposed that the phenomenon of charge fractionalisation of the spatially confined particle in a topological chiral bag may be interpreted as a manifestation of the exclusion statistics proposed by Haldane. The fractional exclusion statistics parameter is just the fractional baryon charge Q of the particle in this case. We also state the necessary conditions for Haldane fractional to occu...

متن کامل

Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.

Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 1994

ISSN: 0031-9007

DOI: 10.1103/physrevlett.72.3629