Hadamard Matrices Modulopand Small Modular Hadamard Matrices
نویسندگان
چکیده
منابع مشابه
Modular Sequences and Modular Hadamard Matrices
For every n divisible by 4, we construct a square matrix H of size n, with coeecients 1, such that H H t nI mod 32. This solves the 32-modular version of the classical Hadamard conjecture. We also determine the set of lengths of 16-modular Golay sequences. 0. Introduction Hadamard matrices can be constructed from various binary sequences, either from Golay complementary sequences, or Williamson...
متن کاملPower Hadamard matrices
We introduce power Hadamard matrices, in order to study the structure of (group) generalized Hadamard matrices, Butson (generalized) Hadamard matrices and other related orthogonal matrices, with which they share certain common characteristics. The new objects turn out to be as interesting, and perhaps as useful, as the objects that motivated them. We develop a basic theory of power Hadamard mat...
متن کاملHadamard and Conference Matrices
We discuss new constructions of Hadamard and conference matrices using relative difference sets. We present the first example of a relative (n, 2, n − 1, n−2 2 )-difference set where n − 1 is not a prime power.
متن کاملCirculant Hadamard Matrices
Note. The determinant of a circulant matrix is an example of a group determinant, where the group is the cyclic group of order n. In 1880 Dedekind suggested generalizing the case of circulants (and more generally group de terminants for abelian groups) to arbitrary groups. It was this suggestion that led Frobenius to the creation group of representation theory. See [1] and the references therein.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Designs
سال: 2016
ISSN: 1063-8539
DOI: 10.1002/jcd.21522