H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation
نویسندگان
چکیده
منابع مشابه
Distant positioning of proteasomal proteolysis relative to actively transcribed genes
While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchroma...
متن کاملNucleotide excision repair and photolyase preferentially repair the nontranscribed strand of RNA polymerase III-transcribed genes in Saccharomyces cerevisiae.
A high-resolution primer extension technique was used to study the relationships between repair, transcription, and mutagenesis in RNA polymerase III transcribed genes in Saccharomyces cerevisiae. The in vivo repair of UV-induced DNA damage by nucleotide excision repair (NER) and by photoreactivation is shown to be preferential for the nontranscribed strand (NTS) of the SNR6 gene. This is in co...
متن کاملThe ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes
Chd1 (Chromodomain Helicase DNA Binding Protein 1) is a conserved ATP-dependent chromatin remodeler that maintains the nucleosomal structure of chromatin, but the determinants of its specificity and its impact on gene expression are not well defined. To identify the determinants of Chd1 binding specificity in the yeast genome, we investigated Chd1 occupancy in mutants of several candidate facto...
متن کاملOn Your MARK, Get SET(D2), Go! H3K36me3 Primes DNA Mismatch Repair
Trimethylation of histone H3 on Lys36 (H3K36me3) by SETD2 is linked to actively transcribed regions. Li et al. identify a novel role for H3K36me3 that facilitates DNA mismatch repair (MMR) in cells by targeting the MMR machinery to chromatin during the cell cycle, thereby explaining certain cases of MMR-defective cancers.
متن کاملThe Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα
DNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted in vitro, how MMR occurs in vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required in vivo to recruit the mismatch recognition protein hMutSα (hMSH2-hMSH6) onto chromatin through direct interactions with the hM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2018
ISSN: 0021-9258
DOI: 10.1074/jbc.ra118.002839