Growth of Solutions of Nonhomogeneous Linear Differential Equations
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملHIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations
Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.
متن کاملGrowth of meromorphic solutions of higher-order linear differential equations
Abstract. In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider th...
متن کاملGrowth and Fixed-points of Meromorphic Solutions of Higher-order Nonhomogeneous Linear Differential Equations (communicated by Vicentiu Radulescu)
In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order nonhomogeneous linear differential equations with meromorphic coefficients and their derivatives. Our results extend greatly the previous results due to J. Wang and I.Laine, B. Beläıdi and A. Farissi.
متن کاملBounded Solutions to Nonhomogeneous Linear Second-Order Difference Equations
By using some solvability methods and the contraction mapping principle are investigated bounded, as well as periodic solutions to some classes of nonhomogeneous linear second-order difference equations on domains N0, Z \N2 and Z. The case when the coefficients of the equation are constant and the zeros of the characteristic polynomial associated to the corresponding homogeneous equation do not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2009
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2009/363927