Growing Intact Membrane by Tuning Carbon Down to Ultrasmall 0.37 nm Microporous Structure for Confining Dissolution of Polysulfides Toward High‐Performance Sodium–Sulfur Batteries

نویسندگان

چکیده

Room temperature sodium–sulfur (Na–S) batteries are severely hampered by dissolution of polysulfides into electrolytes. Herein, a facile approach is used to tune biomass-derived carbon down an ultrasmall 0.37 nm microporous structure for the first time as cathode in batteries. This produced intact uniform Na2S membrane greatly confine while realizing direct solid phase conversion complete reduction sulfur Na2S, which delivers loading 1 mg cm−2 (50 wt.%), excellent rate capacity (933 mAh g−1 @ 0.1 A and 410 2 g−1), long cycle performance (0.036% per decay at after 1500 cycles), high energy density 373 Wh kg−1 (0.1 g−1) based on whole electrode weight (active + carbon), ranking best among all reported plain cathode-based room terms life capacity. It proposed that pores (0.37 nm) can be squeezed out grow surface covering outlet depressing effect life. work provides green chemistry recycle wastes sustainable energies sheds light design unique pore effectively block high-performance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copper-Stabilized Sulfur-Microporous Carbon Cathodes for Li–S Batteries

wileyonlinelibrary.com interact with two Li atoms per S atom, the S cathode can provide reversible high capacity of 1675 mAh g -1 at average potentials of 2.0 V, [ 1–3 ] which is 10× higher energy density than that of classical commercial LiCoO 2 cathode. Since the capacity of current LiCoO 2 -graphite Li-ion battery is controlled by LiCoO 2 cathode, replacement of expensive LiCoO 2 with cheap ...

متن کامل

Carbon NanotubeEnhanced Growth of Silicon Nanowires as an Anode for HighPerformance LithiumIon Batteries

Advanced lithium-ion batteries with high energy density, highrate capability, and excellent cycling performance are critically important for automotive and stationary energy storage applications such as electric vehicles, portable electronics, power tools, and energy storage for many types of renewable energy sources.[1–3] From the materials point of view, silicon is one of the most promising c...

متن کامل

Hydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology

In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) was used as diluent. The effect of polymer composition and qu...

متن کامل

In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing...

متن کامل

Tuning extension of a Difference-Frequency generation up to 100 nm using V-shaped external-cavity for the pump laser

In this research, tunability of a commercial diode laser has extended to about more than ± 11 nm using a V-shaped external-cavity fabricated around the laser. Although under normal condition it can be tuned up to about ± 4 nm just by changing its temperature and injection current. Such modified diode laser has then used in a difference-frequency generation (DFG) experimental setup as pump sourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy & environmental materials

سال: 2023

ISSN: ['2575-0348', '2575-0356']

DOI: https://doi.org/10.1002/eem2.12634