Groups of Hyperbolic Length in Odd Characteristic Groups of Lie Type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

متن کامل

ON THE CHARACTERISTIC DEGREE OF FINITE GROUPS

In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...

متن کامل

Computing in groups of Lie type

We describe two methods for computing with the elements of untwisted groups of Lie type: using the Steinberg presentation and using highest weight representations. We give algorithms for element arithmetic within the Steinberg presentation. Conversion between this presentation and linear representations is achieved using a new generalisation of row and column reduction.

متن کامل

The Isaacs–Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic

In this paper, we prove that a refinement of the Alperin–McKay Conjecture for p-blocks of finite groups, formulated by I.M. Isaacs and G. Navarro in 2002, holds for all covering groups of the symmetric and alternating groups, whenever p is an odd prime.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1994

ISSN: 0021-8693

DOI: 10.1006/jabr.1994.1060