Groups in which every infinite subnormal subgroup is normal
نویسندگان
چکیده
منابع مشابه
Groups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملMathema Tics: G. A. Miller Groups in Which Every Subgroup of Composite Order Is Invariant By
متن کامل
groups in which every subgroup has finite index in its frattini closure
in 1970, menegazzo [gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, atti accad. naz. lincei rend. cl. sci. fis. mat. natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $im$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. a group $g$ is said to have the $fm$...
متن کاملModules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1985
ISSN: 0021-8693
DOI: 10.1016/0021-8693(85)90027-4