Group sparse optimization for learning predictive state representations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Predictive State Representations

We introduce the rst algorithm for learning predictive state representations (PSRs), which are a way of representing the state of a controlled dynamical system. The state representation in a PSR is a vector of predictions of tests, where tests are sequences of actions and observations said to be true if and only if all the observations occur given that all the actions are taken. The problem of ...

متن کامل

Learning Multi-Step Predictive State Representations

Recent years have seen the development of efficient and provably correct spectral algorithms for learning models of partially observable environments arising in many applications. But despite the high hopes raised by this new class of algorithms, their practical impact is still below expectations. One reason for this is the difficulty in adapting spectral methods to exploit structural constrain...

متن کامل

Practical Learning of Predictive State Representations

Over the past decade there has been considerable interest in spectral algorithms for learning Predictive State Representations (PSRs). Spectral algorithms have appealing theoretical guarantees; however, the resulting models do not always perform well on inference tasks in practice. One reason for this behavior is the mismatch between the intended task (accurate filtering or prediction) and the ...

متن کامل

Modelling Sparse Dynamical Systems with Compressed Predictive State Representations

Efficiently learning accurate models of dynamical systems is of central importance for developing rational agents that can succeed in a wide range of challenging domains. The difficulty of this learning problem is particularly acute in settings with large observation spaces and partial observability. We present a new algorithm, called Compressed Predictive State Representation (CPSR), for learn...

متن کامل

Learning State Representations for Query Optimization with Deep Reinforcement Learning

Deep reinforcement learning is quickly changing the field of artificial intelligence. These models are able to capture a high level understanding of their environment, enabling them to learn difficult dynamic tasks in a variety of domains. In the database field, query optimization remains a difficult problem. Our goal in this work is to explore the capabilities of deep reinforcement learning in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2017

ISSN: 0020-0255

DOI: 10.1016/j.ins.2017.05.023