Group Invariant Scattering

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Invariant Scattering

This paper constructs translation-invariant operators on L2.Rd /, which are Lipschitz-continuous to the action of diffeomorphisms. A scattering propagator is a path-ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz-continuous to the actio...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Group invariant Peano curves

Our main theorem is that, if M is a closed hyperbolic 3–manifold which fibres over the circle with hyperbolic fibre S and pseudo-Anosov monodromy, then the lift of the inclusion of S in M to universal covers extends to a continuous map of B to B , where B D H [ S 1 1 . The restriction to S 1 maps onto S 1 and gives an example of an equivariant S –filling Peano curve. After proving the main theo...

متن کامل

translation invariant surfaces in the 3-dimensional heisenberg‎ ‎group

‎in this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional heisenberg group $rm nil_3$‎. ‎in particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm nil_3$‎ ‎whose position vector $x$ satisfies the equation $delta x = ax$‎, ‎where $delta$ is the laplacian operator of the surface and $a$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Homology of invariant group chains

Let G be a group and let X be a generating set for G. Let F be a free group with basis in one-to-one correspondence to X. The kernel of the canonical map F → G is denoted by R(G, X) and is called the relation subgroup associated with X. If we abelianize the group R = R(G, X), we obtain a ZG-module M(G, X) = R/[R, R], where the G-action is given by conjugation. This module is called the relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2012

ISSN: 0010-3640

DOI: 10.1002/cpa.21413