Group graded algebras and almost polynomial growth
نویسندگان
چکیده
منابع مشابه
On Amenability of Group Algebras, Ii: Graded Algebras
We show that, in a finitely generated amenable group G with lower central series (γn(G)), the function n 7→ rank(γn(G)/γn+1(G)) grows subexponentially. This paper continues [22,2]’s study of amenability of affine algebras (based on the notion of almost-invariant finite-dimensional subspace), and applies it to graded algebras associated with finitely generated groups. We consider the graded defo...
متن کاملGraphs with Relations , Coverings and Group - Graded Algebras
The paper studies the interrelationship between coverings of finite directed graphs and gradings of the path algebras associated to the directed graphs. To include gradings of all basic finite-dimensional algebras over an algebraically closed field, a theory of coverings of graphs with relations is introduced. The object of this paper is to relate group gradings on algebras to coverings of a gr...
متن کاملOn graded almost semiprime submodules
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices, Ii
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. Previously we determined the groups G for which the upper/lower nilpotency index is maximal or the upper nilpotency index is ‘almost maximal’ (that is, ...
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices. I
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G|+ 1, where |G| is the order of the commutator subgroup. The authors have previously determined the groups G for which this index is maximal and here they determine the G for which it is ‘almost maximal’, that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.03.004