Ground states for the pseudo-relativistic Hartree equation with external potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Ground States for Pseudo-relativistic Hartree Equations

We prove uniqueness of ground states Q ∈ H1/2(R3) for the pseudo-relativistic Hartree equation,

متن کامل

Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars

Efficient and accurate numerical methods are presented for computing ground states and dynamics of the three-dimensional (3D) nonlinear relativistic Hartree equation both without and with an external potential. This equation was derived recently for describing the mean field dynamics of boson stars. In its numerics, due to the appearance of pseudodifferential operator which is defined in phase ...

متن کامل

Semiclassical analysis for pseudo-relativistic Hartree equations

In this paper we study the semiclassical limit for the pseudo-relativistic Hartree equation √ −ε2∆ +m2u+ V u = (Iα ∗ |u|) |u|p−2u, in R , where m > 0, 2 ≤ p < 2N N−1 , V : R N → R is an external scalar potential, Iα(x) = cN,α |x|N−α is a convolution kernel, cN,α is a positive constant and (N − 1)p−N < α < N . For N = 3, α = p = 2, our equation becomes the pseudo-relativistic Hartree equation wi...

متن کامل

(Semi)Classical Limit of the Hartree Equation with Harmonic Potential

Nonlinear Schrödinger Equations (NLS) of the Hartree type occur in the modeling of quantum semiconductor devices. Their ”semiclassical” limit of vanishing (scaled) Planck constant is both a mathematical challenge and practically relevant when coupling quantum models to classical models. With the aim of describing the semi-classical limit of the 3D Schrödinger–Poisson system with an additional h...

متن کامل

Ground States for the Fractional Schrödinger Equation

In this article, we show the existence of ground state solutions for the nonlinear Schrödinger equation with fractional Laplacian (−∆)u+ V (x)u = λ|u|u in R for α ∈ (0, 1). We use the concentration compactness principle in fractional Sobolev spaces Hα for α ∈ (0, 1). Our results generalize the corresponding results in the case α = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2015

ISSN: 0308-2105,1473-7124

DOI: 10.1017/s0308210513000450