Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProjE: Embedding Projection for Knowledge Graph Completion

With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these mode...

متن کامل

Compositional Learning of Relation Paths Embedding for Knowledge Base Completion

Nowadays, large-scale knowledge bases containing billions of facts have reached impressive sizes; however, they are still far from completion. In addition, most existing methods only consider the direct links between entities, ignoring the vital impact about the semantic of relation paths. In this paper, we study the problem of how to better embed entities and relations into different low dimen...

متن کامل

Probabilistic Belief Embedding for Knowledge Base Completion

This paper contributes a novel embedding model which measures the probability of each candidate belief 〈h, r, t,m〉 in a large-scale knowledge repository via simultaneously learning distributed representations for entities (h and t), relations (r), and even the words in relation mentions (m). It facilitates knowledge completion by means of simple vector operations to discover new beliefs. Given ...

متن کامل

Learning Entity and Relation Embeddings for Knowledge Graph Completion

Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. ...

متن کامل

Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks

Celebrated Sequence to Sequence learning (Seq2Seq) and its fruitful variants are powerful models to achieve excellent performance on the tasks that map sequences to sequences. However, these are many machine learning tasks with inputs naturally represented in a form of graphs, which imposes significant challenges to existing Seq2Seq models for lossless conversion from its graph form to the sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2950230