Graph products and integer domination

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient open domination in graph products

A graph G is an efficient open domination graph if there exists a subset D of V (G) for which the open neighborhoods centered in vertices of D form a partition of V (G). We completely describe efficient domination graphs among direct, lexicographic and strong products of graphs. For the Cartesian product we give a characterization when one factor is K2 and some partial results for grids, cylind...

متن کامل

On outer-connected domination for graph products

An outer-connected dominating set for an arbitrary graph G is a set D̃ ⊆ V such that D̃ is a dominating set and the induced subgraph G[V \ D̃] be connected. In this paper, we focus on the outerconnected domination number of the product of graphs. We investigate the existence of outer-connected dominating set in lexicographic product and Corona of two arbitrary graphs, and we present upper bounds f...

متن کامل

Broadcast domination in graph products of paths

Let γb(G) denote the broadcast domination number for a graph G. In [Discrete Applied Math. 154 (2006), 59–75], Dunbar et al. determined the value of γb(G), where G is the Cartesian product of two paths. In this paper, we evaluate the value of γb(G), whenever G is the strong product, the direct product and the lexicographic product of two paths.

متن کامل

On exponential domination and graph operations

An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v  in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....

متن کامل

Associative graph products and their independence, domination and coloring numbers

Associative products are defined using a scheme of Imrich & Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G ⊗ H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and ir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2012.10.008