منابع مشابه
Graph polynomials from principal pivoting
The recursive computation of the interlace polynomial introduced by Arratia, Bollobás and Sorkin is defined in terms of a new pivoting operation on undirected simple graphs. In this paper, we interpret the new pivoting operation on graphs in terms of standard pivoting (on matrices). Specifically, we show that, up to swapping vertex labels, Arratia et al.’s pivoting operation on a graph is equiv...
متن کاملThe Polynomials of a Graph
In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.
متن کاملGraph polynomials derived from Tutte-Martin polynomials
A graph polynomial q(G; ) has recently been studied byArratia et al. [The interlace polynomial: a new graph polynomial, in: Proceedings of the EleventhAnnual ACM-SIAM Symposium on Discrete Mathematics, San Francisco, CA, 2000, North-Holland, Amsterdam, pp. 237–245]. That polynomial can be derived from the restricted Tutte–Martin polynomial of an isotropic system, which we introduced [A. Bouchet...
متن کاملCircle graph obstructions under pivoting
A circle graph is the intersection graph of a set of chords of a circle. The class of circle graphs is closed under pivotminors. We determine the pivot-minor-minimal non-circle-graphs; there 15 obstructions. These obstructions are found, by computer search, as a corollary to Bouchet’s characterization of circle graphs under local complementation. Our characterization generalizes Kuratowski’s Th...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2006
ISSN: 0012-365X
DOI: 10.1016/j.disc.2006.06.003