Gradual and Fuzzy Modules: Functor Categories
نویسندگان
چکیده
The categorical treatment of fuzzy modules presents some problems, due to the well known fact that category is not abelian, and even normal. Our aim give a representation inside generalized modules, in fact, functor category, Mod−P, which Grothendieck category. To do that, first we consider preadditive P, defined by interval P=(0,1], build torsionfree class J hereditary torsion theory finally identify equivalence classes submodules module M with F-pair, are pair (G,F), decreasing gradual M, where G belongs J, satisfying G=Fd, ∪αF(α) disjoint union F(1) F(α)\G(α), α running (0,1].
منابع مشابه
A-infinity algebras, modules and functor categories
In this survey, we first present basic facts on A-infinity algebras and modules including their use in describing triangulated categories. Then we describe the Quillen model approach to A-infinity structures following K. Lefèvre’s thesis. Finally, starting from an idea of V. Lyubashenko’s, we give a conceptual construction of A-infinity functor categories using a suitable closed monoidal catego...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملAbelian Categories of Modules over a (Lax) Monoidal Functor
In [CY98] Crane and Yetter introduced a deformation theory for monoidal categories. The related deformation theory for monoidal functors introduced by Yetter in [Yet98] is a proper generalization of Gerstenhaber’s deformation theory for associative algebras [Ger63, Ger64, GS88]. In the present paper we solidify the analogy between lax monoidal functors and associative algebras by showing that u...
متن کاملfuzzy projective modules and tensor products in fuzzy module categories
let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...
متن کاملRecollements of Derived Functor Categories ∗ †
We give an equivalence between the derived category of a locally finitely presented category and the derived category of contravariant functors from its finitely presented subcategory to the category of abelian groups, in the spirit of Krause’s work [H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765–781]. Then we provide a criterion for the existence of r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10224272