Gorenstein Hilbert coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert Functions of Irreducible Arithmetically Gorenstein Schemes

In this paper we compute the Hilbert functions of irreducible (or smooth) and reduced arithmetically Gorenstein schemes that are twisted anti-canonical divisors on arithmetically Cohen-Macaulay schemes. We also prove some folklore results characterizing the Hilbert functions of irreducible standard determinantal schemes, and we use them to produce a new class of functions that occur as Hilbert ...

متن کامل

Hilbert Functions of Gorenstein Monomial Curves

It is a conjecture due to M. E. Rossi that the Hilbert function of a one-dimensional Gorenstein local ring is non-decreasing. In this article, we show that the Hilbert function is non-decreasing for local Gorenstein rings with embedding dimension four associated to monomial curves, under some arithmetic assumptions on the generators of their defining ideals in the noncomplete intersection case....

متن کامل

Bounds and asymptotic minimal growth for Gorenstein Hilbert functions

Article history: Received 4 April 2008 Available online 18 December 2008 Communicated by Stewen Dale Cutkosky

متن کامل

Upper Bounds of Hilbert Coefficients and Hilbert Functions

Abstract. Let (R,m) be a d-dimensional Cohen-Macaulay local ring. In this note we prove, in a very elementary way, an upper bound of the first normalized Hilbert coefficient of a mprimary ideal I ⊂ R that improves all known upper bounds unless for a finite number of cases, see Remark 1.3. We also provide new upper bounds of the Hilbert functions of I extending the known bounds for the maximal i...

متن کامل

Results on Hilbert coefficients of a Cohen-Macaulay module

Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2013

ISSN: 1939-2346

DOI: 10.1216/jca-2013-5-2-179