gmr: Gaussian Mixture Regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation of a Gaussian Mixture Regressor to a New Input Distribution: Extending the C-GMR Framework

This paper addresses the problem of the adaptation of a Gaussian Mixture Regression (GMR) to a new input distribution, using a limited amount of input-only examples. We propose a new model for GMR adaptation, called Joint GMR (J-GMR), that extends the previously published framework of Cascaded GMR (C-GMR). We provide an exact EM training algorithm for the J-GMR. We discuss the merits of the J-G...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

An Investigation of Emotion Prediction Uncertainty Using Gaussian Mixture Regression

Existing continuous emotion prediction systems implicitly assume that prediction certainty does not vary with time. However, perception differences among raters and other possible sources of variability suggest that prediction certainty varies with time, which warrants deeper consideration. In this paper, the correlation between the inter-rater variability and the uncertainty of predicted emoti...

متن کامل

Latent Gaussian Mixture Regression for Human Pose Estimation

Discriminative approaches for human pose estimation model the functional mapping, or conditional distribution, between image features and 3D pose. Learning such multi-modal models in high dimensional spaces, however, is challenging with limited training data; often resulting in over-fitting and poor generalization. To address these issues latent variable models (LVMs) have been introduced. Shar...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Open Source Software

سال: 2021

ISSN: 2475-9066

DOI: 10.21105/joss.03054