Glycosyltransferase Function in Core 2-Type Protein O Glycosylation
نویسندگان
چکیده
منابع مشابه
Glycosyltransferase function in core 2-type protein O glycosylation.
Three glycosyltransferases have been identified in mammals that can initiate core 2 protein O glycosylation. Core 2 O-glycans are abundant among glycoproteins but, to date, few functions for these structures have been identified. To investigate the biological roles of core 2 O-glycans, we produced and characterized mice deficient in one or more of the three known glycosyltransferases that gener...
متن کاملProtein O-glycosylation analysis.
This review provides an overview on the methods available for analysis of O-glycosylation. Three major themes are addressed: analysis of released O-glycans including different O-glycan liberation, derivatization, and detection methods; analysis of formerly O-glycosylated peptides yielding information on O-glycan attachment sites; analysis of O-glycopeptides, representing by far the most informa...
متن کاملMucin-Type O-Glycosylation in Gastric Carcinogenesis
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and asso...
متن کاملMucin-Type O-Glycosylation in Invertebrates.
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especia...
متن کاملProbing mucin-type O-linked glycosylation in living animals.
Changes in O-linked protein glycosylation are known to correlate with disease states but are difficult to monitor in a physiological setting because of a lack of experimental tools. Here, we report a technique for rapid profiling of O-linked glycoproteins in living animals by metabolic labeling with N-azidoacetylgalactosamine (GalNAz) followed by Staudinger ligation with phosphine probes. After...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular and Cellular Biology
سال: 2009
ISSN: 0270-7306,1098-5549
DOI: 10.1128/mcb.00204-09