Global well-posedness of<i>z</i>-weak solutions to the primitive equations without vertical diffusivity

نویسندگان

چکیده

In this paper, we consider the initial boundary value problem in a cylindrical domain to three dimensional primitive equations with full eddy viscosity momentum but only horizontal diffusivity temperature equation. Global well-posedness of $z$-weak solution is established for any such datum that itself and its vertical derivative belong $L^2$. This not extends results \cite{Cao5} from spatially periodic case general domains also weakens regularity assumptions on data which are required be $H^2$ there.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEAT DIFFUSION By

The three–dimensional incompressible viscous Boussinesq equations, under the assumption of hydrostatic balance, govern the large scale dynamics of atmospheric and oceanic motion, and are commonly called the primitive equations. To overcome the turbulence mixing a partial vertical diffusion is usually added to the temperature advection (or density stratification) equation. In this paper we prove...

متن کامل

Global well-posedness for the primitive equations with less regular initial data

Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du système des équations primitives pour des données moins régulières. On interpole les résultats d’existence globale à données Ḣ 1 2 petites fournis par le théorème de FujitaKato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est suffisamment petit, et pour des données plus régulière...

متن کامل

On the Global Well-posedness for the Axisymmetric Euler Equations

This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in critical Besov spaces B 1+3/p p,1 . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity.

متن کامل

On Global Well-Posedness of the Lagrangian Averaged Euler Equations

We study the global well-posedness of the Lagrangian averaged Euler equations in three dimensions. We show that a necessary and sufficient condition for the global existence is that the BMO norm of the stream function is integrable in time. We also derive a sufficient condition in terms of the total variation of certain level set functions, which guarantees the global existence. Furthermore, we...

متن کامل

Global Well-posedness of the Viscous Boussinesq Equations

We prove the global well-posedness of the viscous incompressible Boussinesq equations in two spatial dimensions for general initial data in Hm with m ≥ 3. It is known that when both the velocity and the density equations have finite positive viscosity, the Boussinesq system does not develop finite time singularities. We consider here the challenging case when viscosity enters only in the veloci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2022

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0065114