Global solutions for the generalized SQG equation and rearrangements

نویسندگان

چکیده

In this paper, we study the existence of rotating and traveling-wave solutions for generalized surface quasi-geostrophic (gSQG) equation. The are obtained by maximization energy over set rearrangements a fixed function. take form co-rotating vortices with N N -fold symmetry. translating vortex pairs. Moreover, these constitute desingularization point counter-rotating Some other quantitative properties also established.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global weak solutions for SQG in bounded domains

We prove existence of global weak L solutions of the inviscid SQG equation in bounded domains.

متن کامل

Local and global strong solutions for SQG in bounded domains

We prove local well-posedness for the inviscid surface quasigeostrophic (SQG) equation in bounded domains of R. When fractional Dirichlet Laplacian dissipation is added, global existence of strong solutions is obtained for small data for critical and supercritical cases. Global existence of strong solutions with arbitrary data is obtained in the subcritical cases.

متن کامل

Uniqueness for Sqg Patch Solutions

This paper is about the evolution of a temperature front governed by the surface quasi-geostrophic equation. The existence part of that program within the scale of Sobolev spaces was obtained by the third author (2008). Here we revisit that proof introducing some new tools and points of view which allow us to conclude the also needed uniqueness result.

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation

We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2023

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8835