Global solutions for initial–boundary value problem of quasilinear wave equations
نویسندگان
چکیده
منابع مشابه
Global solutions of quasilinear wave equations
has a global solution for all t ≥ 0 if initial data are sufficiently small. Here the curved wave operator is ̃g = g ∂α∂β, where we used the convention that repeated upper and lower indices are summed over α, β = 0, 1, 2, 3, and ∂0 = ∂/∂t, ∂i = ∂/∂x i, i = 1, 2, 3. We assume that gαβ(φ) are smooth functions of φ such that gαβ(0)= mαβ , where m00=−1, m11= m22= m33=1 and mαβ= 0, if α 6=β. The resul...
متن کاملModulating pulse solutions for quasilinear wave equations
This paper presents an existence proof for symmetric modulating pulse solutions of a quasilinear wave equation. Modulating pulse solutions consist of a pulse-like envelope advancing in the laboratory frame and modulating an underlying wave-train; they are also referred to as ‘moving breathers’ since they are time-periodic in a moving frame of reference. The problem is formulated as an infinite-...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملExistence and Uniqueness of Solutions of Quasilinear Wave Equations (ii)
In this work we prove a result concernig the existence and uniqueness of solutions of quasilinear wave equation and we consider also their trivial solutions. We consider the following initial-boundary value problem for the nonlinear wave equation in the form u+ f (u) + g (u̇) = 0 in [0, T ) × Ω (QL) with initial values u0 = u (0, ·) , u1 = u̇ (0, ·) and boundary vale null, that is, u (t, x) = 0 o...
متن کاملGlobal Existence of Solutions to Multiple Speed Systems of Quasilinear Wave Equations in Exterior Domains
1. Introduction. The goal of this paper is to prove global existence of solutions to quadratic quasilinear Dirichlet-wave equations exterior to a class of compact obstacles. As in Metcalfe-Sogge [22], the main condition that we require for our class of obstacles is exponential local energy decay (with a possible loss of regularity). Our result improves upon the earlier one of Metcalfe-Sogge [22...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2008
ISSN: 0022-0396
DOI: 10.1016/j.jde.2008.02.013