Global Regular Solutions to a Kelvin--Voigt Type Thermoviscoelastic System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Existence and Asymptotic Behavior of Weak Solutions to Nonlinear Thermoviscoelastic Systems with Clamped Boundary Conditions

This paper is concerned with global existence, uniqueness, and asymptotic behavior, as time tends to infinity, of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions. The constitutive assumptions for the Helmholtz free energy include the model for the study of phase transitions in shape memory alloys. To describe phase transitions between different configurat...

متن کامل

Global existence result for thermoviscoelastic problems

We consider viscoelastic solids undergoing thermal expansion and exhibiting hysteresis effects due to plasticity or phase transformations. Within the framework of generalized standard solids, the problem is described in a 3D setting by the momentum equilibrium equation, the flow rule describing the dependence of the stress on the strain history, and the heat transfer equation. Under appropriate...

متن کامل

Optimal control for a class of mechanical thermoviscoelastic frictional contact problems

Abstract: We study optimal control of systems governed by a coupled system of hemivariational inequalities, modeling a dynamic thermoviscoelastic problem, which describes frictional contact between a body and a foundation. We employ the Kelvin-Voigt viscoelastic law, include the thermal effects and consider the general nonmonotone and multivalued subdifferential boundary conditions. We consider...

متن کامل

Stability of a Nonlinear Axially Moving String with the Kelvin-Voigt Damping

In this paper, a nonlinear axially moving string with the Kelvin-Voigt damping is considered. It is proved that the string is stable, i.e., its transversal displacement converges to zero when the axial speed of the string is less than a certain critical value. The proof is established by showing that a Lyapunov function corresponding to the string decays to zero exponentially. It is also shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 2013

ISSN: 0036-1410,1095-7154

DOI: 10.1137/110859026