Global Quasi-Neutral Limit for a Two-Fluid Euler–Poisson System in Several Space Dimensions

نویسندگان

چکیده

This paper concerns the quasi-neutral limit to Cauchy problem for a two-fluid Euler–Poisson system in several space dimensions. When initial data are sufficiently close constant equilibrium states, we prove global existence of smooth solutions with uniform bounds respect Debye length Sobolev spaces. allows us pass all times obtain compressible Euler system. We also error estimates between solution and that These results obtained by establishing energy various dissipation estimates. A key step proof is control quasi-neutrality velocities. For this purpose, an orthogonal projection operator used.

منابع مشابه

Global solutions for the Dirac-Klein-Gordon system in two space dimensions

The Cauchy problem for the classical Dirac-Klein-Gordon system in two space dimensions is globally well-posed for L Schrödinger data and wave data in H 1 2 ×H − 1 2 . In the case of smooth data there exists a global smooth (classical) solution. The proof uses function spaces of Bourgain type based on Besov spaces – previously applied by Colliander, Kenig and Staffilani for generalized Benjamin-...

متن کامل

synthesis of platinum nanostructures in two phase system

چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...

Global Existence of Solutions of the Nordström-vlasov System in Two Space Dimensions

Abstract. The dynamics of a self-gravitating ensemble of collisionless particles is modeled by the Nordström-Vlasov system in the framework of the Nordström scalar theory of gravitation. For this system in two space dimensions, integral representations of the first order derivatives of the field are derived. Using these representations we show global existence of smooth solutions for large data.

متن کامل

Ultracold neutral plasma expansion in two dimensions

We extend an isothermal thermal model of ultracold neutral plasma expansion to systems without spherical symmetry, and use this model to interpret new fluorescence measurements on these plasmas. By assuming a self-similar expansion, it is possible to solve the fluid equations analytically and to include velocity effects to predict the fluorescence signals. In spite of the simplicity of this app...

متن کامل

A Boundary Layer Problem for an Asymptotic Preserving Scheme in the Quasi-Neutral Limit for the Euler--Poisson System

We consider the two-fluid Euler-Poisson system modeling the expansion of a quasineutral plasma in the gap between two electrodes. The plasma is injected from the cathode using boundary conditions which are not at the quasi-neutral equilibrium. This generates a boundary layer at the cathode. We numerically show that classical schemes as well as the asymptotic preserving scheme developed in [9] a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2023

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/22m1501465