منابع مشابه
global minus domination in graphs
a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...
متن کاملFractional global domination in graphs
Let G = (V, E) be a graph. A function g : V → [0, 1] is called a global dominating function (GDF ) of G, if for every v ∈ V, g(N [v]) = ∑ u∈N [v] g(u) ≥ 1 and g(N(v)) = ∑ u/ ∈N(v) g(u) ≥ 1. A GDF g of a graph G is called minimal (MGDF ) if for all functions f : V → [0, 1] such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V , f is not a GDF . The fractional global domination number γfg(G) is...
متن کاملGlobal Domination in Planar Graphs
For any graph G = (V, E), D V is a global dominating set if D dominates both G and its complement G . The global domination number g(G) of a graph G is the fewest number of vertices required of a global dominating set. In general, max{(G), (G )} ≤ g(G) ≤ (G)+(G ), where (G) and (G ) are the respective domination numbers of G and G . We show, when G is a planar graph, that g(G) ≤ max{...
متن کاملGlobal minus Domination in Graphs
A function f : V (G) → {−1, 0, 1} is a minus dominating function if for every vertex v ∈ V (G), ∑ u∈N [v] f(u) ≥ 1. A minus dominating function f of G is called a global minus dominating function if f is also a minus dominating function of the complement G of G. The global minus domination number γ− g (G) of G is defined as γ − g (G) = min{ ∑ v∈V (G) f(v) | f is a global minus dominating functi...
متن کاملLD-graphs and global location-domination
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2014
ISSN: 0716-0917
DOI: 10.4067/s0716-09172014000100003