Global Lipschitz stability for an inverse source problem for the Navier–Stokes equations

نویسندگان

چکیده

For linearized Navier–Stokes equations, we consider an inverse source problem of determining a spatially varying divergence-free factor. We prove the global Lipschitz stability by interior data over time interval and velocity field at t0>0 spatial domain. The key machinery are Carleman estimates for equations operator rot.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Stability for inverse point source problem

What is the stability of recovering the location of xj . Suppose the number of point sources is known as m. Or we formulate the stability argument as following statement. Statement 1.1 If ul for l = 1, 2 be the solutions of equation 1 associated with Cauchy data (f , g) and sources F l = ∑m j=1 P l jδ(x − xj), if we have ‖(f, g) − (f, g)‖ ≤ , can we find a permutation π of {1, 2, . . . ,m} such...

متن کامل

Lipschitz stability in an inverse hyperbolic problem with impulsive forces

Let u = u(q) satisfy a hyperbolic equation with impulsive input: ∂ t u(x, t)−4u(x, t) + q(x)u(x, t) = δ(x1)δ(t) and let u|t<0 = 0. Then we consider an inverse problem of determining q(x), x ∈ Ω from data u(q)|ST and (∂u(q)/∂ν) |ST . Here Ω ⊂ {(x1, . . . , xn) ∈ R|x1 > 0}, n ≥ 2, is a bounded domain, ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1}, ν = ν(x) is the unit outward normal vector to ∂Ω at x ∈ ...

متن کامل

Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

In this article, we present an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky (K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability for this inverse problem is our main result a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2021

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2021.2021189