Global existence of entropy-weak solutions to the compressible Navier–Stokes equations with non-linear density dependent viscosities

نویسندگان

چکیده

In this paper, we considerably extend the results on global existence of entropy-weak solutions to compressible Navier–Stokes system with density dependent viscosities obtained, independently (using different strategies) by Vasseur–Yu \[Invent. Math. 206 (2016) and arXiv:1501.06803 (2015)] Li–Xin \[arXiv:1504.06826 (2015)]. More precisely, are able consider a physical symmetric viscous stress tensor $\sigma = 2 \mu(\rho) ,{\mathbb D}(u) +(\lambda(\rho) \operatorname{div} u - P(\rho) \operatorname {Id}$ where ${\mathbb \[\nabla + \nabla^T u]/2$ shear bulk (respectively $\mu(\rho)$ $\lambda(\rho)$) satisfying BD relation $\lambda(\rho)=2(\mu'(\rho)\rho \mu(\rho))$ pressure law $P(\rho)=a\rho^\gamma$ (with $a>0$ given constant) for any adiabatic constant $\gamma>1$. The non-linear viscosity satisfies some lower upper bounds low high densities (our result includes case $\mu(\rho)= \mu\rho^\alpha$ $2/3 < \alpha 4$ $\mu>0$ constant). This provides an answer longstanding question equations viscosities, mentioned instance F. Rousset \[Bourbaki 69ème année, 2016–2017, exp. 1135].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonexistence of time dependent global weak solutions to the compressible Navier-Stokes equations

In this paper we prove the nonexistence of global weak solutions to the compressible Navier-Stokes equations for the isentropic gas in R N , N ≥ 3, where the pressure law given by p(ρ) = aρ γ , a > 0, 1 < γ ≤

متن کامل

Global Entropy Solutions to Exothermically Reacting, Compressible Euler Equations

The global existence of entropy solutions is established for the compressible Euler equations for one-dimensional or plane-wave flow of an ideal gas, which undergoes a one-step exothermic chemical reaction under Arrhenius-type kinetics. We assume that the reaction rate is bounded away from zero and the total variation of the initial data is bounded by a parameter that grows arbitrarily large as...

متن کامل

Global Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations with Density-Dependent Viscosity

We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the stro...

متن کامل

Existence of Global Weak Solutions for 3d Degenerate Compressible Navier-stokes Equations

In this paper, we prove the existence of global weak solutions for 3D compressible Navier-Stokes equations with degenerate viscosity. The method is based on the Bresch and Desjardins entropy conservation [2]. The main contribution of this paper is to derive the Mellet-Vasseur type inequality [32] for the weak solutions, even if it is not verified by the first level of approximation. This provid...

متن کامل

Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities

In this paper, we prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2021

ISSN: ['1435-9855', '1435-9863']

DOI: https://doi.org/10.4171/jems/1143