Global Existence and Blow-Up for the Pseudo-parabolic p(x)-Laplacian Equation with Logarithmic Nonlinearity
نویسندگان
چکیده
Abstract In this paper, we study the initial boundary value problem of pseudo-parabolic p ( x )-Laplacian equation with logarithmic nonlinearity. The existence global solution is obtained by using potential well method and inequality. addition, sufficient conditions blow-up are concavity method.
منابع مشابه
Global Existence, Exponential Decay and Blow-Up of Solutions for a Class of Fractional Pseudo-Parabolic Equations with Logarithmic Nonlinearity
In this paper, we study the fractional pseudo-parabolic equations ut +(−4) u+(−4) ut = u log |u|. Firstly, we recall the relationship between the fractional Laplace operator (−4) and the fractional Sobolev space H and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of global w...
متن کاملExistence and Blow-up for a Nonlocal Degenerate Parabolic Equation
In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملGlobal Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources
This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωv α(x, t)dx, x ∈Ω, t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωu β(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow ...
متن کاملBlow-up for the 1d Nonlinear Schrödinger Equation with Point Nonlinearity Ii: Supercritical Blow-up Profiles
We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity, (0.1) i∂tψ + ∂ 2 xψ + δ|ψ|p−1ψ = 0, where δ = δ(x) is the delta function supported at the origin. In the L supercritical setting p > 3, we construct self-similar blow-up solutions belonging to the energy space Lx ∩Ḣ x. This is reduced to finding outgoing solutions of a certain stationary profile equation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Mathematical Physics
سال: 2021
ISSN: ['1776-0852', '1402-9251']
DOI: https://doi.org/10.1007/s44198-021-00010-z