Global Convergence of Curve Search Methods for Unconstrained Optimization
نویسندگان
چکیده
منابع مشابه
Global Convergence of a Memory Gradient Method for Unconstrained Optimization
The memory gradient method is used for unconstrained optimization, especially large scale problems. The first idea of memory gradient method was proposed by Miele and Cantrell (1969) and Cragg and Levy (1969). In this paper, we present a new memory gradient method which generates a descent search direction for the objective function at every iteration. We show that our method converges globally...
متن کاملOn the Convergence of Grid-Based Methods for Unconstrained Optimization
The convergence of direct search methods for unconstrained minimization is examined in the case where the underlying method can be interpreted as a grid or pattern search over successively refined meshes. An important aspect of the main convergence result is that translation, rotation, scaling and shearing of the successive grids are allowed.
متن کاملImproved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملHybrid scatter tabu search for unconstrained global optimization
The problem of finding a global optimum of an unconstrained multimodal function has been the subject of intensive study in recent years, giving rise to valuable advances in solution methods. We examine this problem within the framework of adaptive memory programming (AMP), focusing particularly on AMP strategies that derive from an integration of Scatter Search and Tabu Search. Computational co...
متن کاملNonmonotone curvilinear line search methods for unconstrained optimization
We present a new algorithmic framework for solving unconstrained minimization problems that incorporates a curvilinear linesearch. The search direction used in our framework is a combination of an approximate Newton direction and a direction of negative curvature. Global convergence to a stationary point where the Hessian matrix is positive semideenite is exhibited for this class of algorithms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2016
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2016.77066