Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems
نویسندگان
چکیده
منابع مشابه
Global Convergence of a New Hybrid Gauss--Newton Structured BFGS Method for Nonlinear Least Squares Problems
In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a new update formula and a new switch criterion for the iterative matrix to solve nonlinear least squares problems. We approximate the second term in the Hessian by a positive definite BFGS matrix. Under suitable conditions, global convergence of the proposed method with a backtracking line search is established. Moreov...
متن کاملQuasi-newton Methods for Nonlinear Least Squares Focusing on Curvatures
Most existing quasi-Newton methods for nonlinear least squares problems incorporate both linear and nonlinear information in the secant update. These methods exhibit good theoretical properties, but are not especially accurate in practice. The objective of this paper is to propose quasi-Newton methods that only update the nonlinearities. We show two advantages of such updates. First, fast conve...
متن کاملA convergence proof of the split Bregman method for regularized least-squares problems
The split Bregman (SB) method [14] is a fast splitting-based algorithm that solves image reconstruction problems with general l1, e.g., total-variation (TV) and compressed sensing (CS), regularizations by introducing a single variable split to decouple the data-fitting term and the regularization term, yielding simple subproblems that are separable (or partially separable) and easy to minimize....
متن کاملA reduced Newton method for constrained linear least-squares problems
We propose an iterative method that solves constrained linear least-squares problems by formulating them as nonlinear systems of equations and applying the Newton scheme. The method reduces the size of the linear system to be solved at each iteration by considering only a subset of the unknown variables. Hence the linear system can be solved more efficiently. We prove that the method is locally...
متن کاملApproximate Gauss-Newton Methods for Nonlinear Least Squares Problems
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2010
ISSN: 1807-0302
DOI: 10.1590/s1807-03022010000200006