Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
نویسندگان
چکیده
منابع مشابه
Global Behavior of the Difference Equation
The main objective of this paper is to study the qualitative behavior for a class of nonlinear rational difference equation. We study the local stability, periodicity, Oscillation, boundedness, and the global stability for the positive solutions of equation. Examples illustrate the importance of the results Keywords— Difference equation, stability, oscillation, boundedness, globale stability an...
متن کاملOn the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$
We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملThe Periodic Character of a Rational Difference Equation 3
with y−s, y−s+1, . . . , y−1 ∈ (0,∞) and k, m ∈ {1, 2, 3, 4, . . .}, where s = k+m. We prove that if gcd(2k,m) = 1, then solutions to this equation are asymptotically 2k-periodic. This generalizes the corresponding result for m = 3 and k = 1, proved in K. S. Berenhaut et al., Periodic Solutions of the Rational Difference Equation yn = yn−3+yn−4 yn−1 ,Journal of Difference Equations and Applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum Mathematicum
سال: 2015
ISSN: 0044-8753,1212-5059
DOI: 10.5817/am2015-2-77