GLOBAL ASYMPTOTIC STABILITY OF A HIGHER ORDER DIFFERENCE EQUATION
نویسندگان
چکیده
منابع مشابه
Global asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...
متن کاملGlobal asymptotic stability of the higher order equation
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1 = axn + bxn−k A + Bxn−k where a, b, A, B are all positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x−k, x−k+1, ..., x0 are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotica...
متن کاملAsymptotic Periodicity of a Higher-Order Difference Equation
We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: xn = f (xn−p1 , . . . ,xn−pk ,xn−q1 , . . . ,xn−qm), n∈N0, where pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· < pk, q1 < q2 < ··· < qm and gcd(p1, . . . , pk,q1, . . . ,qm) = 1, the function f ∈ C[(0,∞), (α,∞)], α > 0, is i...
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2007
ISSN: 1015-8634
DOI: 10.4134/bkms.2007.44.3.439