Global asymptotic stability of a family of difference equations
نویسندگان
چکیده
منابع مشابه
Global Asymptotic Stability in a Class of Difference Equations
We study the difference equation xn = [( f × g1 + g2 +h)/(g1 + f × g2 +h)](xn−1, . . . ,xn−r), n = 1,2, . . . , x1−r , . . . ,x0 > 0, where f ,g1,g2 : (R+) → R+ and h : (R+) → [0,+∞) are all continuous functions, and min1≤i≤r{ui,1/ui} ≤ f (u1, . . . ,ur) ≤ max1≤i≤r{ui,1/ui}, (u1, . . . ,ur) T ∈ (R+) . We prove that this difference equation admits c = 1 as the globally asymptotically stable equi...
متن کاملGlobal Asymptotic Stability of Solutions of Cubic Stochastic Difference Equations
Global almost sure asymptotic stability of solutions of some nonlinear stochastic difference equations with cubic-type main part in their drift and diffusive part driven by square-integrable martingale differences is proven under appropriate conditions in R1. As an application of this result, the asymptotic stability of stochastic numerical methods, such as partially drift-implicit θ-methods wi...
متن کاملİbrahim Yalcinkaya and Cengiz Çinar GLOBAL ASYMPTOTIC STABILITY OF A SYSTEM OF TWO NONLINEAR DIFFERENCE EQUATIONS
In this paper a sufficient condition is obtained for the global asmptotic stability of the following system of difference equations zn+1 = tn + zn−1 tnzn−1 + a , tn+1 = zn + tn−1 zntn−1 + a , n = 0, 1, 2, ... where the parameter a (0,∞) and the initial values (zk, tk) (0,∞) (for k = −1, 0).
متن کاملAsymptotic behavior of a system of two difference equations of exponential form
In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...
متن کاملAsymptotic Stability for a Class of Nonlinear Difference Equations
1 College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 2 Key Laboratory of Network Control & Intelligent Instrument, Chongqing University of Posts and Telecommunications, Ministry of Education, Chongqing 400065, China 3 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China 4 School of Communication and I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2008.04.032