Global asymptotic stability in a perturbed higher-order linear difference equation
نویسندگان
چکیده
منابع مشابه
Global asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...
متن کاملGlobal asymptotic stability of the higher order equation
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1 = axn + bxn−k A + Bxn−k where a, b, A, B are all positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x−k, x−k+1, ..., x0 are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotica...
متن کاملAsymptotic Periodicity of a Higher-Order Difference Equation
We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: xn = f (xn−p1 , . . . ,xn−pk ,xn−q1 , . . . ,xn−qm), n∈N0, where pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· < pk, q1 < q2 < ··· < qm and gcd(p1, . . . , pk,q1, . . . ,qm) = 1, the function f ∈ C[(0,∞), (α,∞)], α > 0, is i...
متن کاملA Global Convergence Result for a Higher Order Difference Equation
Let f (z1, . . . ,zk)∈ C(Ik,I) be a given function, where I is (bounded or unbounded) subinterval of R, and k ∈ N. Assume that f (y1, y2, . . . , yk) ≥ f (y2, . . . , yk, y1) if y1 ≥ max{y2, . . . , yk}, f (y1, y2, . . . , yk) ≤ f (y2, . . . , yk, y1) if y1 ≤ min{y2, . . . , yk}, and f is nondecreasing in the last variable zk. We then prove that every bounded solution of an autonomous differenc...
متن کاملGlobal Dynamics for a Higher Order Rational Difference Equation
In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2003
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(03)00084-1