Girth, Pebbling, and Grid Thresholds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Girth, Pebbling, and Grid Thresholds

In this note we answer a question of Hurlbert about pebbling in graphs of high girth. Specifically we show that for every g there is a Class 0 graph of girth at least g. The proof uses the so-called Erdős construction and employs a recent result proved by Czygrinow, Hurlbert, Kierstead and Trotter. We also use the Czygrinow et al. result to prove that Graham’s pebbling product conjecture holds ...

متن کامل

Cover Pebbling Thresholds for the Complete Graph

We obtain first-order cover pebbling thresholds of the complete graph for Maxwell Boltzmann and Bose Einstein configurations.

متن کامل

The Complexity of Pebbling and Cover Pebbling

This paper discusses the complexity of graph pebbling, dealing with both traditional pebbling and the recently introduced game of cover pebbling. Determining whether a configuration is solvable according to either the traditional definition or the cover pebbling definition is shown to be NP -complete. The problem of determining the cover pebbling number for an arbitrary demand configuration is ...

متن کامل

Pebbling and optimal pebbling in graphs

Given a distribution of pebbles on the vertices of a graph G, a pebbling move takes two pebbles from one vertex and puts one on a neighboring vertex. The pebbling number Π(G) is the least k such that for every distribution of k pebbles and every vertex r, a pebble can be moved to r. The optimal pebbling number ΠOPT (G) is the least k such that some distribution of k pebbles permits reaching eac...

متن کامل

Thresholds for families of multisets, with an application to graph pebbling

In this paper we prove two multiset analogs of classical results. We prove a multiset analog of Lovász’s version of the Kruskal-Katona Theorem and an analog of the Bollobás-Thomason threshold result. As a corollary we obtain the existence of pebbling thresholds for arbitrary graph sequences. In addition, we improve both the lower and upper bounds for the ‘random pebbling’ threshold of the seque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2006

ISSN: 0895-4801,1095-7146

DOI: 10.1137/s0895480102416374