Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity
نویسندگان
چکیده
منابع مشابه
Propagation of Gevrey Regularity for Solutions of the Boltzmann Equation for Maxwellian Molecules
We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.
متن کاملGevrey Regularity for the Solution of the Spatially Homogeneous Landau Equation
This is a non-linear diffusion equation, and the coefficients āi j, c̄ depend on the solution f . Here we are mainly concerned with the Gevrey class regularity for the solution of the Landau equation. This equation is obtained as a limit of the Boltzmann equation when the collisions become grazing (see [8] and references therein). Recently, a lot of progress has been made on the study of the Sob...
متن کاملRegularity theory for the spatially homogeneous Boltzmann equation with cut-off
We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the singularities of the initial datum. Our proofs are based on a detailed study o...
متن کاملOn the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity
Abstract. We prove an inequality on the Kantorovich-Rubinstein distance – which can be seen as a particular case of a Wasserstein metric– between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, but with a moderate angular singularity. Our method is in the spirit of [7]. We deduce some well-posedness and stability results in the physically relevant cases of ...
متن کاملOn the Regularity of Solutions to the Spatially Homogeneous Boltzmann Equation with Polynomially Growing Collision Kernel
The paper is devoted to the propagation of smoothness (more precisely L∞-moments of the derivatives) of the solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernels.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/584169