Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity
نویسندگان
چکیده
منابع مشابه
Spin Networks and Recoupling in Loop Quantum Gravity 1;2
I discuss the role played by the spin-network basis and recoupling theory (in its graphical tangle-theoretic formulation) and their use for performing explicit calculations in loop quantum gravity. In particular, I show that recoupling theory allows the derivation of explicit expressions for the eingenvalues of the quantum volume operator. An important side result of these computations is the d...
متن کاملSpin Networks and Recoupling in Loop Quantum Gravity
I discuss the role played by the spin-network basis and recoupling theory (in its graphical tangle-theoretic formulation) and their use for performing explicit calculations in loop quantum gravity. In particular, I show that recoupling theory allows the derivation of explicit expressions for the eingenvalues of the quantum volume operator. An important side result of these computations is the d...
متن کاملQuantum Geometry from the Formalism of Loop Quantum Gravity
Introducing Quantum Geometry as a consequence of the quantisation procedure of loop quantum gravity. By recasting general relativity in terms of 1 2 -flat connections, specified by the Holst’s Modification to the Palatini action, we can recast general relativity as a gauge theory. By preforming a 3+1 split of space-time a Legendre transformation can be preformed to give an expression of the Ham...
متن کاملEigenvalues of the volume operator in loop quantum gravity
We present a simple method to calculate certain sums of the eigenvalues of the volume operator in loop quantum gravity. We derive the asymptotic distribution of the eigenvalues in the classical limit of very large spins which turns out to be of a very simple form. The results can be useful for example in the statistical approach to quantum gravity.
متن کاملLoop Quantum Gravity Vacuum with Nondegenerate Geometry
In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 1996
ISSN: 0556-2821,1089-4918
DOI: 10.1103/physrevd.54.2664