Geometry and Topology of Continuous Best and Near Best Approximations
نویسندگان
چکیده
منابع مشابه
Best approximations and porous sets
Let D be a nonempty compact subset of a Banach space X and denote by S(X) the family of all nonempty bounded closed convex subsets of X. We endow S(X) with the Hausdorff metric and show that there exists a set F ⊂ S(X) such that its complement S(X) \ F is σ-porous and such that for each A ∈ F and each x̃ ∈ D, the set of solutions of the best approximation problem ‖x̃− z‖ → min, z ∈ A, is nonempty...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولBest subspace tensor approximations
In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors, such a representation can be obtained via the singular value decomposition which allows to compute the best rank k approximations. For t-tensors with t > 2 many generalizations of the singular val...
متن کاملMinima and best approximations in constructive analysis
Working in Bishop’s constructive mathematics, we first show that minima can be defined as best approximations, in such a way as to preserve the compactness of the underlying metric space when the function is uniformly continuous. Results about finding minima can therefore be carried over to the setting of finding best approximations. In particular, the implication from having at most one best a...
متن کاملSuccessive Minima and Best Simultaneous Diophantine Approximations
We study the problem of best approximations of a vector α ∈ R n by rational vectors of a lattice Λ ⊂ R whose common denominator is bounded. To this end we introduce successive minima for a periodic lattice structure and extend some classical results from geometry of numbers to this structure. This leads to bounds for the best approximation problem which generalize and improve former results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2000
ISSN: 0021-9045
DOI: 10.1006/jath.2000.3467