Geometrical and spectral properties of Pisot substitutions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Properties of Cubic Complex Pisot Units

For q ∈ R, q > 1, Erdős, Joó and Komornik study distances of the consecutive points in the set

متن کامل

Pisot substitutions and their associated tiles par

Let σ be a unimodular Pisot substitution over a d letter alphabet and let X1, . . . , Xd be the associated Rauzy fractals. In the present paper we want to investigate the boundaries ∂Xi (1 ≤ i ≤ d) of these fractals. To this matter we define a certain graph, the so-called contact graph C of σ. If σ satisfies Manuscrit reçu le 17 novembre 2004. The author was supported by project S8310 of the Au...

متن کامل

Coincidence for Substitutions of Pisot Type

— Let φ be a substitution of Pisot type on the alphabet A = {1, 2, . . . , d}; φ satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that φn(i) and φn(j) have the same k-th letter, and the prefixes of length k − 1 of φn(i) and φn(j) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 an...

متن کامل

Homological Pisot Substitutions and Exact Regularity

We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and the first rational Čech cohomology is d-dimensional. We construct examples of such “homological Pisot” substitutions whose tiling flows do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide ...

متن کامل

Geometrical and Spectral Properties of Dilations

Proof. It would be easy to obtain these properties from the matrix form of U constructed in Sec. I.5.2, but we prefer to give a direct proof, independent of the particular realization of U . Part (i): To prove that L and L∗ are wandering subspaces, it suffices to show that UL0 ⊥L0 and UL0 ⊥ L0 for n = 1,2, . . .; by reason of symmetry it even suffices to consider one of these cases, say that of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2016

ISSN: 0166-8641

DOI: 10.1016/j.topol.2016.01.018