Geometric versus non-geometric rough paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric versus non-geometric rough paths

In this article we consider rough differential equations (RDEs) driven by non-geometric rough paths, using the concept of branched rough paths introduced in [Gub10]. We first show that branched rough paths can equivalently be defined as γ-Hölder continuous paths in some Lie group, akin to geometric rough paths. We then show that every branched rough path can be encoded in a geometric rough path...

متن کامل

Geometric kth shortest paths

1 This paper studies algorithmic and combinatorial properties of shortest paths of different homo2 topy types in a polygonal domain with holes. We define the “second shortest path” to be the shortest 3 path that is homotopically different from the (first) shortest path; the kth shortest path for an arbitrary 4 integer k is defined analogously. We introduce the “kth shortest path map”—a structur...

متن کامل

Geometric k Shortest Paths

We consider the problem of computing k shortest paths in a two-dimensional environment with polygonal obstacles, where the jth path, for 1  j  k, is the shortest path in the free space that is also homotopically distinct from each of the first j 1 paths. In fact, we consider a more general problem: given a source point s, construct a partition of the free space, called the kth shortest path m...

متن کامل

Approximating Geometric Bottleneck Shortest Paths

In a geometric bottleneck shortest path problem, we are given a set S of n points in the plane, and want to answer queries of the following type: Given two points p and q of S and a real number L, compute (or approximate) a shortest path between p and q in the subgraph of the complete graph on S consisting of all edges whose lengths are less than or equal to L. We present efficient algorithms f...

متن کامل

Geometric Flows with Rough Initial Data

We show the existence of a global unique and analytic solution for the mean curvature flow and the Willmore flow of entire graphs for Lipschitz initial data with small Lipschitz norm. We also show the existence of a global unique and analytic solution to the Ricci-DeTurck flow on euclidean space for bounded initial metrics which are close to the euclidean metric in L∞ and to the harmonic map fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

سال: 2015

ISSN: 0246-0203

DOI: 10.1214/13-aihp564