Geometric mean and norm Schwarz inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities

We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

متن کامل

Cauchy's Mean Theorem and the Cauchy-Schwarz Inequality

This document presents the mechanised proofs of two popular theorems attributed to Augustin Louis Cauchy Cauchy’s Mean Theorem and the Cauchy-Schwarz Inequality.

متن کامل

A Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality

Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Functional Analysis

سال: 2016

ISSN: 2008-8752

DOI: 10.1215/20088752-3158073