منابع مشابه
Improved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملInterpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities
We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.
متن کاملCauchy's Mean Theorem and the Cauchy-Schwarz Inequality
This document presents the mechanised proofs of two popular theorems attributed to Augustin Louis Cauchy Cauchy’s Mean Theorem and the Cauchy-Schwarz Inequality.
متن کاملA Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality
Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Functional Analysis
سال: 2016
ISSN: 2008-8752
DOI: 10.1215/20088752-3158073