Geometric hyperplanes of embeddable Grassmannians

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric hyperplanes of the half-spin geometries arise from embeddings

Let the point-line geometry Γ = (P ,L) be a half-spin geometry of type Dn,n. Then, for every embedding of Γ in the projective space P(V ), where V is a vector space of dimension 2n−1, it is true that every hyperplane of Γ arises from that embedding. It follows that any embedding of this dimension is universal. There are no embeddings of higher dimension. A corollary of this result and the fact ...

متن کامل

Geometric structures on finite- and infinite-dimensional Grassmannians

In this paper, we study the Grassmannian of n-dimensional subspaces of a 2n-dimensional vector space and its infinite-dimensional analogues. Such a Grassmannian can be endowed with two binary relations (adjacent and distant), with pencils (lines of the Grassmann space) and with so-called Zreguli. We analyse the interdependencies among these different structures. Mathematics Subject Classificati...

متن کامل

Geometric Poisson Brackets on Grassmannians and Conformal Spheres

In this paper we relate the geometric Poisson brackets on the 2Grassmannian in R4 and on the (2, 2) Möbius sphere. We show that, when written in terms of local moving frames, the geometric Poisson bracket on the Möbius sphere does not restrict to the space of differential invariants of Schwarzian type. But when the concept of conformal natural frame is transported from the conformal sphere into...

متن کامل

Affine Grassmannians and the Geometric Satake in Mixed Characteristic

We endow the set of lattices in Qp with a reasonable algebro-geometric structure. As a result, we prove the representability of affine Grassmannians and establish the geometric Satake correspondence in mixed characteristic. We also give an application of our theory to the study of Rapoport-Zink spaces.

متن کامل

Bayes Optimal Hyperplanes! Maximal Margin Hyperplanes

Maximal margin classifiers are a core technology in modern machine learning. They have strong theoretical justifications and have shown empirical successes. We provide an alternative justification for maximal margin hyperplane classifiers by relating them to Bayes optimal classifiers that use Parzen windows estimations with Gaussian kernels. For any value of the smoothing parameter (the width o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1992

ISSN: 0021-8693

DOI: 10.1016/0021-8693(92)90176-m