Geometric convergence bounds for Markov chains in Wasserstein distance based on generalized drift and contraction conditions
نویسندگان
چکیده
Soit (Xn)n=0? une chaîne de Markov définie sur un espace polonais qui a distribution stationnaire ?. Cet article s’intéresse aux bornes supérieures pour la distance Wasserstein entre les distributions Xn et En particulier, borne géométrique explicite est obtenue à l’équilibre en utilisant des conditions dérive contraction dont paramètres varient dans l’espace d’états. Ces nouveaux types permettent d’obtenir convergence plus précises que versions standard où sont constants. Des applications ce résultat données le contexte processus auto-régressifs non-linéaires d’un algorithme Gibbs modèle effets aléatoires.
منابع مشابه
Geometric Bounds for Eigenvalues of Markov Chains
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملPerturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent ...
متن کاملDrift conditions and invariant measures for Markov chains
We consider the classical Foster–Lyapunov condition for the existence of an invariant measure for a Markov chain when there are no continuity or irreducibility assumptions. Provided a weak uniform countable additivity condition is satis/ed, we show that there are a /nite number of orthogonal invariant measures under the usual drift criterion, and give conditions under which the invariant measur...
متن کاملApplications of geometric bounds to the convergence rate of Markov chains on Rn
Quantitative geometric rates of convergence for reversible Markov chains are closely related to the spectral gap of the corresponding operator, which is hard to calculate for general state spaces. This article describes a geometric argumen t to give di erent types of bounds for spectral gaps of Markov chains on bounded subsets of R and to compare the rates of convergence of di erent Markov chai...
متن کاملQuantitative bounds on convergence of time-inhomogeneous Markov Chains
Convergence rates of Markov chains have been widely studied in recent years. In particular, quantitative bounds on convergence rates have been studied in various forms by Meyn and Tweedie (1994), Rosenthal (1995), Roberts and Tweedie (1999), Jones and Hobert (2001), Fort (2001) and others. In this paper, we first extend a result of Rosenthal (1995) concerning quantitative convergence rates for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1195