Geodesics in Randers spaces of constant curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randers Manifolds of Positive Constant Curvature

We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it. 1. Introduction. The geometry of Finsler manifolds of constant flag curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, u...

متن کامل

Vanishing S-curvature of Randers spaces

We give a necessary and sufficient condition on a Randers space for the existence of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, such a measure coincides with the Busemann-Hausdorff measure up to a constant multiplication.

متن کامل

Vision Theory in Spaces of Constant Curvature

In this paper, vision theory for Euclidean, spherical and hyperbolic spaces is studied in a uniform framework using diierential geometry in spaces of constant curvature. It is shown that the epipolar geometry for Euclidean space can be naturally generalized to the spaces of constant curvature. In particular, it is shown that, in the general case, the bilinear epipolar constraint is exactly the ...

متن کامل

Constant curvature foliations in asymptotically hyperbolic spaces

Let (M, g) be an asymptotically hyperbolic manifold with a smooth conformal compactification. We establish a general correspondence between semilinear elliptic equations of scalar curvature type on ∂M and Weingarten foliations in some neighbourhood of infinity inM . We focus mostly on foliations where each leaf has constant mean curvature, though our results apply equally well to foliations whe...

متن کامل

Some Examples of Randers Spaces

A Riemannian almost product structure on a manifold induces on a submanifold of codimension 1 a structure generalizing the paracontact structures and containing a Riemannain metric and an one form . We show that the pair consisting of this Riemannian metric and one form defines a strongly convex Randers metric on submanifold. We establish some properties of this Randers metric and we provide so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2006

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-06-04051-7