Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with n...

متن کامل

1 0 Ju n 20 08 Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds

We show that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non-unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentz 3-manifolds with non compact (local) i...

متن کامل

On curvature homogeneous 4D Lorentzian manifolds

We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. PACS numbers: 04.20, 02.40 AMS classification scheme numbers: 53C50

متن کامل

ar X iv : 0 80 6 . 16 32 v 2 [ m at h . D G ] 5 N ov 2 00 8 Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non-unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with n...

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2008

ISSN: 1815-0659

DOI: 10.3842/sigma.2008.088