منابع مشابه
Regulation of pertussis toxin and lipopolysaccharide levels of Bordetella pertussis 134 in response to modulators
Whooping cough (pertussis) is a highly contagious disease of the human respiratory tract, which is caused by Bordetella pertussis. Reemerge of pertussis in some highly immunized populations and divergency in gene order among several B. pertussis strains promoted this research to study the change of pertussis toxin (PT) and lipopolysacharide levels in response to the different environments. Th...
متن کاملEvaluation of Pertussis Toxin Expression in B2 and THIJS Media
Whole-cell pertussis vaccine (wP) has been imperative and highly effective in preventing childhood deaths due to pertussis. Pertussis toxin is one of the virulence factors of Bordetella pertussis in all available pertussis vaccines. wP production in Razi Vaccine and Serum Research Institute is according to bioreactor culture of B. pertussis strains in B2 medium. The aim ...
متن کاملPromoter of the pertussis toxin operon and production of pertussis toxin.
Pertussis toxin (PT), the major virulence factor of Bordetella pertussis, is composed of five different subunits whose genes are organized as an operon. We report the mapping of the promoter region of the PT operon and show that this promoter is only weakly active in Escherichia coli. Bordetella parapertussis and Bordetella bronchiseptica, which do not produce any PT, are shown to have a weaker...
متن کاملMembrane localization of the S1 subunit of pertussis toxin in Bordetella pertussis and implications for pertussis toxin secretion.
Pertussis toxin is secreted from Bordetella pertussis with the assistance of the Ptl transport system, a member of the type IV family of macromolecular transporters. The S1 subunit and the B oligomer combine to form the holotoxin prior to export from the bacterial cell, although the site of assembly is not known. To better understand the pathway of pertussis toxin assembly and secretion, we exa...
متن کاملPertussis Toxin Treatment Alters Manganese
Exposure of rats to hyperoxia or to treatment with endotoxin, increases lung manganese superoxide dismutase (MnSOD) gene expression. However, the paths by which these environmental signals are transduced into enhanced MnSOD gene expression are unknown. We now provide evidence that heterotrimeric G proteins are involved in the hyperoxia-induced increase in lung MnSOD gene expression but that per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Microbiology
سال: 1989
ISSN: 0950-382X,1365-2958
DOI: 10.1111/j.1365-2958.1989.tb00111.x