Genetic programming convergence
نویسندگان
چکیده
We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured shown many cases to fall. In an expanding region about root node, genetic opcodes function evaluation values are identical or nearly identical. Bottom up (leaf root) analysis shows syntactic semantic (including entropy) similarity expand from outermost node. Despite large regions zero variation, continues evolve near crossover disruption suggests improved systems within existing memory use.
منابع مشابه
automatic verification of authentication protocols using genetic programming
implicit and unobserved errors and vulnerabilities issues usually arise in cryptographic protocols and especially in authentication protocols. this may enable an attacker to make serious damages to the desired system, such as having the access to or changing secret documents, interfering in bank transactions, having access to users’ accounts, or may be having the control all over the syste...
15 صفحه اولGenetic Programming for Classification: An Analysis of Convergence Behaviour
This paper investigates the unexpected convergence behaviour of genetic Programming (GP) for classification problems. Firstly the paper investigates the relationship between computational effort and attainable classification accuracy. Secondly we attempt to understand why GP classifiers sometimes fail to reach satisfactory levels of accuracy for certain problems regardless of computational effo...
متن کاملارزیابی پارامترهای دینامیکی خاک با استفاده از روش genetic expression programming
سه مدل ارائه شده در این مطالعه یعنی مدل هاردین- درنویش (هایپر بولیک)، مدل هایپربولیک اصلاح شده و مدل رمبرگ- اسگود همه در اصل مدل هایپر بولیک می باشند که به نوعی مورد اصلاح قرار گرفته اند. این مدل های غیر خطی سیکلی همه تابعی از کرنش برشی هستند که برای بیان یکی از مهم ترین خصوصیت های دینامیکی خاک یعنی مدول برشی نرمال شده به کار می روند. با توجه به اهمیت این مدل ها مطالعات بسیار کمی در این زمینه ص...
Genetic Programming
The aim of genetic programming is to evolve programs or functions (symbolic regression) thanks to artificial evolution. This technique is now mature and can routinely yield results on par with (or even better than) human intelligence. This chapter sums up the basics of genetic programming and outlines the main subtleties one should be aware of in order to obtain good results.
متن کاملGenetic Programming
Quantum computers are computational devices that use the dynamics of atomic-scale objects to store and manipulate information. Only a few, small-scale quantum computers have been built to date, but quantum computers can in principle outperform all possible classical computers in significant ways. Quantum computation is therefore a subject of considerable theoretical interest that may also have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Programming and Evolvable Machines
سال: 2021
ISSN: ['1389-2576', '1573-7632']
DOI: https://doi.org/10.1007/s10710-021-09405-9