Generic quantum Fourier transforms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact quantum Fourier transforms and discrete logarithm algorithms

We show how the quantum fast Fourier transform (QFFT) can be made exact for arbitrary orders (first for large primes). For most quantum algorithms only the quantum Fourier transform of order 2n is needed, and this can be done exactly. Kitaev [9] showed how to approximate the Fourier transform for any order. Here we show how his construction can be made exact by using the technique known as “amp...

متن کامل

Implementation of quantum and classical discrete fractional Fourier transforms

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importanc...

متن کامل

On Some Quantum and Analytical Properties of Fractional Fourier Transforms

Fractional Fourier transforms (FrFT) are a natural one-parameter family of unitary transforms that have the ordinary Fourier transform embedded as a special case. In this paper, following the efforts of several authors, we explore the theory and applications of FrFT, from the standpoints of both quantum mechanics and analysis. These include the phase plane interpretation of FrFT, FrFT’s role in...

متن کامل

Fourier transforms on the quantum SU(1,1) group

The main goal is to interpret the Askey-Wilson function and the corresponding transform pair on the quantum SU(1, 1) group. A weight on the C *-algebra of continuous functions vanishing at infinity on the quantum SU(1, 1) group is studied, which is left and right invariant in a weak sense with respect to a product defined using Wall functions. The Haar weight restricted to certain subalgebras a...

متن کامل

Sparse Generalized Fourier Transforms ∗

Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2006

ISSN: 1549-6325,1549-6333

DOI: 10.1145/1198513.1198525