Generic critical points of normal matrix ensembles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic critical points of normal matrix ensembles

The evolution of the degenerate complex curve associated with the ensemble at a generic critical point is related to the finite time singularities of Laplacian Growth. It is shown that the scaling behavior at a critical point of singular geometry x ∼ y is described by the first Painlevé transcendent. The regularization of the curve resulting from discretization is discussed. PACS numbers: 05.30...

متن کامل

Normal Points for Generic Hyperbolic Maps

Given a continuous transformation on a compact space we call a point normal if the ergodic averages of any continuous functions converge. For example, the familiar notion of a normal number 0 < ξ < 1 in the context of number theory is one which is normal in the above sense for all of the transformations T : [0, 1) → [0, 1) given by T (ξ) = dξ (mod 1) for each d ≥ 2. In this note, we want to con...

متن کامل

Two-level correlation function of critical random-matrix ensembles

The two-level correlation function Rd,β(s) of d-dimensional disordered models (d = 1, 2, and 3) with long-range random-hopping amplitudes is investigated numerically at criticality. We focus on models with orthogonal (β = 1) or unitary (β = 2) symmetry in the strong (b ≪ 1) coupling regime, where the parameter b plays the role of the coupling constant of the model. It is found that Rd,β(s) is o...

متن کامل

Anomalously large critical regions in power-law random matrix ensembles.

We investigate numerically the power-law random matrix ensembles. Wave functions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger tha...

متن کامل

Power-law eigenvalue density, scaling, and critical random-matrix ensembles.

We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2006

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/39/28/s09