Generic colourful tori and inverse spectral transform for Hankel operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Inverse Spectral Results on Two-dimensional Tori

is much more complicated than the corresponding problem on surfaces of genus ~ 2. On one hand, for certain classes of potentials, one can reconstruct V from the spectrum of (1.1); on the other hand, there are potentials that have (lots of) isospectral deformations. In their analysis of (1.1), an important element is the decomposition of the Fourier series of V into "primitive summands," and we ...

متن کامل

Diophantine tori and spectral asymptotics for non-selfadjoint operators

We study spectral asymptotics for small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part possesses several invariant Lagrangian tori enjoying a Diophantine property. We get complete asymptotic expansions for all eigenvalues in certain rectangles in the complex plane in two different cases: in the...

متن کامل

Symplectic inverse spectral theory for pseudodifferential operators

We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.

متن کامل

Inverse Harish - Chandra transform and difference operators

In the paper we calculate the images of the operators of multiplication by Laurent polynomials with respect to the Harish-Chandra transform and its non-symmetric generalization due to Opdam. It readily leads to a new simple proof of the Harish-Chandra inversion theorem in the zonal case (see [HC,He1]) and the corresponding theorem from [O1]. We assume that k > 0 and restrict ourselves to compac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tunisian Journal of Mathematics

سال: 2019

ISSN: 2576-7666,2576-7658

DOI: 10.2140/tunis.2019.1.347